
Supplementary Materials of PPEA-Depth

Yue-Jiang Dong1, Yuan-Chen Guo1, Ying-Tian Liu1, Fang-Lue Zhang2, Song-Hai Zhang1*

1BNRist, Department of Computer Science and Technology, Tsinghua University, China
2Victoria University of Wellington, New Zealand

1{dongyj21@mails., guoyc19@mails., liuyingt23@mails., shz@}tsinghua.edu.cn 2fanglue.zhang@vuw.ac.nz

1 Supplementary Experiments

1.1 Robustness to Dynamic Scenes

In our method, most network parameters are frozen and un-
affected by the erroneous loss caused by object motion. Ev-
idence is presented in Table 2 in the original paper, where
tuning adapters (the last row) outperforms tuning the entire
network (the third to last row) on CityScapes, a dataset with
prevalent moving objects.

We conduct further experiments to validate the efficacy
of our method by excluding areas of movable objects, such
as cars and pedestrians, from the loss computation during
training. Only the result of tuning the entire network is im-
proved but our method cannot be enhanced (see Table 1).
This shows the robustness of our approach to dynamic ob-
jects. Furthermore, even when excluding dynamic objects,
tuning the entire network is still worse than our method, em-
phasizing the benefits of the adapter-tuning strategy.

Tuning Strategy Dynamic Objects AbsRel SqRel δ < 1.25

Full Fine-Tune Included 0.116 1.120 0.873
Excluded 0.106 1.000 0.890

Adapters Included 0.100 0.976 0.904
(Ours) Excluded 0.102 1.113 0.904

Table 1: PPEA-Depth’s Robustness to Dynamic Objects.

1.2 Improvement with encoder adapters arises
from a more complex model?

Supplement to Table 1 in the original paper, we did an-
other experiment on Stage 1. We employ RepLKNet-B as
the depth encoder and tune all the parameters of both the
base model and encoder adapters. There is no significant
performance gain (see Table 2). This proves that our PEFT
scheme is the main reason for the improvement shown in
Table 1 in the original paper and our approach can better
exploit the pre-trained encoder than tuning all parameters.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Encoder Decoder Encoder Adapters AbsRel SqRel δ < 1.25

Tuning Tuning Tuning 0.093 0.703 0.911

Table 2: Tuning both encoder adapter and entire network is
worse than freezing encoder and tuning encoder adapters.

1.3 Comparison to Linear Probing
PPEA-Depth can tune each layer in the network by adding
adapters. It is more flexible than linear probing, where only
the last linear layer can be tuned. We’ve made a compari-
son with a strategy similar to classifier adjustment, where
we freeze the encoder and only tune the decoder in Table
?? (Row 1) for Stage 1. Results of this strategy for Stage 2
are also worse than our approach (see Table 3), showing the
necessity of encoder adapters for domain shift in Stage 2.

2 Ablations for Adapter Design
We conduct experiments to assess various adapter designs
using RepLKNet-B. All the reported results are from the stu-
dent network.

2.1 Encoder Adapter
We compare different encoder adapter designs for the do-
main adaptation stage on the KITTI dataset.

Type of Blocks to Attach Adapters Our method involves
attaching encoder adapters to two types of blocks within
the RepLKNet (Ding et al. 2022) backbone: RepLKBlock
and ConvFFN. We conducted an ablation study by adding
adapters to only one type of these blocks. The results are
presented in Table 4. Evidently, the frozen encoder benefits
more from adding adapters to RepLKBlock rather than Con-
vFFN. RepLKBlock, which leverages a large kernel size of
up to 31x31, stands as the core innovation of RepLKNet.
This outcome aligns with the intuition that adapters on more
intricate blocks carry greater significance.

Receptive Field of Projectors Adapters project the input
feature down to a lower dimension and then project it up. As
depth estimation is a regression task, will encoder adapters
benefit from a larger receptive field? We conducted exper-
iments using different receptive fields for the adapters of
RepLKBlock, which, as indicated by the results in Table 4,

Encoder Encoder Decoder Decoder Errors↓ Accuracy↑
Adapters Adapter AbsRel SqRel δ < 1.25

Frozen Frozen Tuning Not Used 0.114 1.215 0.878
Frozen Frozen Frozen Tuning 0.107 1.004 0.889

Table 3: Results of Classifier Adjustment for Stage 2.

Adapter Params Errors↓ Accuracy↑
Position (M) AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

RepLKBlock 17.7 0.093 0.718 4.285 0.171 0.909 0.968 0.984
ConvFFN 3.78 0.100 0.769 4.442 0.175 0.900 0.966 0.984
All 21.9 0.090 0.666 4.175 0.168 0.912 0.969 0.984

Table 4: Comparison of Attaching Adapters to Different Types of Blocks. Attaching adapters to more sophisticated blocks
in backbone leads to better results.

BatchNorm

AdapterPre-trained
Block

BatchNorm

AdapterPre-trained
Block

BatchNorm

AdapterPre-trained
Block

Design (a) Design (b) Design (c) Design (d)

BatchNorm

AdapterPre-trained
Block

BatchNorm

FrozenTuning

Figure 1: Different Encoder Adapter Designs. Design (a) is our final choice.

holds greater importance than ConvFFN. We compared two
types of projectors: linear projection and convolution with
a kernel size of 3, while maintaining a bottleneck ratio of
0.25. The results are presented in Table 5. From the results,
it can be inferred that all metrics benefit from a larger re-
ceptive field in the down projector, while the enhancement
resulting from a wider receptive field in the up projector is
not as apparent.

BatchNorm and Skip Connections We experiment with
different encoder adapter designs by varying the position
of the BatchNorm module and skip connections (Figure 1),
while keeping the inner adapter design the same (bottleneck
ratio is 0.25, down projector is a 3x3 convolution and up pro-
jector is linear). The evaluation results of different designs
are in Table 6.

The BatchNorm module before the pre-trained block is
part of the original RepLKBlock and ConvFFN design
(more details are shown in Figure 3). We design to let the
adapter share the BatchNorm module with the original pre-
trained block, and unfreeze the parameters of the Batch-
Norm during training. From the results in Table 6, it can be

concluded that:

• The final depth estimation accuracy benefit from the
BatchNorm block before the encoder adapter. Removing
the prefix BatchNorm before encoder adapters results in
an obvious performance loss (Design (b)).

• The BatchNorm module before the pre-trained block
is indispensable (Design (c)). As the parameters in the
pre-trained blocks are frozen, the frozen parameters are
matched with the output of the prefix BatchNorm, re-
moving the prefix BatchNorm for the pre-trained block
leads to degraded results.

• Sharing the same prefix BatchNorm module between
the pre-trained block and the encoder adapter (Design
(d)) and training an extra BatchNorm for the encoder
adapter (Design (a)) show no obvious difference in the
final depth estimation errors and accuracy. The sharing
strategy leads to a lower trainable parameter cost, so de-
sign (a) in Figure 1 is our choice.

Down Up Params Errors↓ Accuracy↑
Projector Projector (M) AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Linear Linear 7.5 0.095 0.776 4.372 0.174 0.909 0.967 0.983
Conv Linear 21.9 0.090 0.666 4.175 0.168 0.912 0.969 0.984
Conv Conv 35.4 0.090 0.671 4.203 0.169 0.912 0.968 0.984

Table 5: Influence of Encoder Adapter Receptive Field. Domain adaptation stage benefits from employing encoder adapters
with down projector of larger receptive fields, while the improvement brought by up projector of larger receptive fields is not
obvious.

Design Errors↓ Accuracy↑
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

a 0.090 0.666 4.175 0.168 0.912 0.969 0.984
b 0.095 0.769 4.407 0.175 0.905 0.965 0.983
c 0.103 0.761 4.499 0.181 0.890 0.962 0.983
d 0.091 0.680 4.219 0.170 0.911 0.968 0.984

Table 6: Comparison of Different BatchNorm and Skip Connection Designs in Encoder Adapters.

Input Params Errors↓ Accuracy↑
Scales (M) AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

3 0.149 0.103 0.977 5.693 0.157 0.895 0.974 0.991
0, 3 0.185 0.100 0.976 5.673 0.152 0.904 0.977 0.992

0, 1, 2, 3 0.486 0.101 0.982 5.666 0.152 0.904 0.977 0.992

Table 7: Comparison of Different Input Feature Levels to Decoder Adapter.

2.2 Decoder Adapter
We compare different decoder adapter designs for the scene
adaptation stage on the CityScapes dataset. We keep the
encoder adapter design consistent (bottleneck ratio is 0.25,
down projector is a 3x3 convolution, and up projector is lin-
ear) and use the same weights trained from the domain adap-
tation stage as initial model weights in the following exper-
iments.

Input Scales The depth encoder generates feature maps
at four levels (F 0, F 1, F 2, F 3), corresponding to 1/4, 1/8,
1/16, and 1/32 of the original image spatial shape. Upsam-
pling feature maps at different levels to the 1/4 scale, we
concatenate and feed them to the decoder adapters. We com-
pare different input feature scales for the decoder adapter,
and the results are in Table 7, suggesting that using the con-
catenation of the shallowest and deepest features as input is
the optimal choice, considering both parameter count and
performance.

3 Inference Latency Introduced by Adapter
As adapters are additional modules added to the network, we
investigate the inference latencies introduced by the encoder
and decoder adapters. We measure the total time required
for the model to predict depth maps for 1,525 images in the
CityScapes test dataset and calculate the average inference
time per image. Our encoder backbone is RepLKNet-B, and

we use a batch size of 12. The results are presented in Table
8. Thanks to the parallel data stream design, the inference
time remains largely consistent whether adapters are used or
not.

Encoder Decoder Time (s)Adapters Adapters

0.037
 0.036
 0.038

Table 8: Average Inference Time Per Image on CityScapes
test set with and without adapters.

4 Supplementary Details
4.1 Overview of the Whole Framework
We follow the self-supervised depth estimation framework
proposed by Watson et al. (2021), whose depth network con-
sists of a teacher network and a student network to improve
estimated depths and better handle dynamic objects, and this
design is also adopted in Guizilini et al. (2022); Feng et al.
(2022). The teacher depth network is trained jointly with
the student, sharing the same pose predictions, and is dis-
carded during evaluation. Both the teacher and student net-

works are based on the U-Net architecture. They share iden-
tical designs for the depth network decoder but differ in their
encoders. The teacher’s input is a single image frame (the
frame at timestamp t, denoted as It). This input, It, under-
goes processing through the depth encoder and subsequently
the depth decoder, leading to pixel-wise depth estimation.

As shown in Figure 2, the input of the student network
includes two frames, It and its previous frame It−1. The
two frames are first separately extracted by the first stage of
the encoder to generate first-level features F 0

t , F
0
t−1, which

are both in the shape of (B,C,H/4,W/4), where B is the
batch size, C is the number of channels, H and W represent
the spatial shape of It. Then a cost volume is built based on
F 0
t , F

0
t−1, relative camera pose T (which is currently pre-

dicted by the pose network), and a set of depth values Dc.
Iterating over Dc, we project F 0

t−1 using T and the it-
erated depth value di to generate F 0

t−1→t according to the
pixel correspondences mentioned in Equation (1) in the
main paper. The L1 difference between F 0

t−1→t and F 0
t is

adopted to build the cost volume. The minimum and maxi-
mum depths (dmin, dmax) are initialized as 0.1m and 100m
respectively, and are dynamically tuned in the learning pro-
cess according to the strategy proposed in Watson et al.
(2021). The depth set Dc is generated by uniformly sam-
pling depth values in [dmin, dmax] in logarithm space.

The generated cost volume Ct is in the shape of
(B, |Dc|, H/4,W/4), where |Dc| represents the number of
depths in set Dc. Then Ct is concatenated with F 0

t at the sec-
ond dimension, and the concatenated feature is compressed
to the shape of (B,C,H/4,W/4) by a 3x3 convolution
called reduce conv. Then the output of the reduce conv is
fed to the rest stages of the depth encoder and then to the
depth decoder, and finally predicts a depth map Dt.

The cost volume design in the student network introduces
It−1 and an iteration over all possible depths in the encoder,
and exploits the relationship between two consequent frames
to improve depth estimation. However, such a design ex-
aggerates the depth estimation error in the dynamic object
areas and tends to predict depths of such areas as infinity
(Watson et al. 2021).

4.2 Teacher-Student Distillation Scheme
To overcome the infinity-depth issue as mentioned above, a
teacher-student training scheme is employed in our network
as in previous works (Watson et al. 2021; Feng et al. 2022;
Guizilini et al. 2022).

For the dynamic object areas, the predictions from the stu-
dent network are unreliable. Such unreliable area M is com-
puted by comparing the predicted depths from the teacher
and student in a pixel-wise manner:

M = max(
Ds −Dt

Dt
,
Dt −Ds

Ds
) > 1

During the training process, the teacher network is super-
vised by the image reprojection loss (as mentioned in Sec-
tion 3.1 in the main paper). For the student network, the reli-
able area (¬M) is also supervised by the image reprojection
loss, while the unreliable area (M) is instead supervised by
a depth consistency loss to enforce a knowledge distillation

Pre-trained Adapter Ratio Tuning Params(M)

Backbone Type Teacher Student

RepLKNet-B
Encoder 0.0625 8.15 8.41
Encoder 0.25 21.9 22.2
Decoder 0.25 0.185 0.185

RepLKNet-L
Encoder 0.0625 18.1 18.6
Encoder 0.25 47.6 48.1
Decoder 0.25 4.15 4.15

Table 9: Details of Tunable Parameters in Teacher and Stu-
dent Depth Network Adapters.

from the teacher. The depth consistency loss is the L1 dif-
ference of the predicted depths between the teacher and the
student. In the depth consistency loss, gradients to depths
predicted by the teacher are blocked, ensuring the distilla-
tion is unidirectional, i.e. only from teacher to student.

Different from the previous works (Watson et al. 2021;
Feng et al. 2022; Guizilini et al. 2022), we do not freeze
the teacher depth network and pose network to fine-tune in
the last five epochs, since we do not observe a significant
performance improvement with such technique on PPEA-
Depth.

4.3 Amount of Encoder Adapter Parameters

All parameter counts mentioned in the main paper are based
on the teacher network. Here, we provide supplementary
details regarding the tunable parameter count for encoder
and decoder adapters in the student network. Throughout
all experiments, the settings for student encoder adapters
(down projector, up projector, and bottleneck ratio) remain
the same as those of the teacher network. The student net-
work has more tunable parameters than the teacher because
apart from the encoder adapters and the BatchNorm mod-
ule, the reduce conv module (as detailed in Section 4.1) also
receives updates. Refer to Table 9 for specific parameter de-
tails.

4.4 RepLKNet

In Section 3.3 of the main paper, we briefly introduce the
main pipeline of RepLKNet-31B, which we adopt as the en-
coder backbone of both the teacher and student depth net-
work. Here we introduce the detailed structure of the two
key modules to which we attach encoder adapters, RepLK-
Block and ConvFFN. For more details please refer to Ding
et al. (2022).

The detailed structures of RepLKBlock and ConvFFN are
shown in Figure 3. Our proposed encoder adapters share
the same prefix BatchNorm module with RepLKBlock and
ConvFFN (as in Figure 1). Since we adopt a different batch
size during training compared with the RepLKNet pre-
training process, all parameters of BatchNorm modules are
not frozen.

4.5 Training Details
PPEA-Depth is implemented with PyTorch (Paszke et al.
(2017)) and is trained on GeForce RTX 3090 GPU. We use
the Adam optimizer (Kingma and Ba (2014)), with β1 =
0.9, β2 = 0.999. At the domain adaptation stage (Stage 1),
the batch size is set to 12. This stage trains for 25 epochs,
and the initial learning rate is 1e-4. The learning rate decays
to 1e-5 after 15 epochs and decays to 1e-6 after 20 epochs.
During the scene adaptation stage (Stage 2), we utilize a
batch size of 24 for training. This stage is conducted over
10 epochs, employing a learning rate of 1e-5 for CityScapes
and 5e-5 for DDAD.

4.6 Evaluation Metrics Details
We evaluate our depth estimation results using the standard
depth assessment metrics (Eigen and Fergus 2015), includ-
ing Absolute Relative Error (AbsRel), Squared Relative Er-
ror (SqRel), Root Mean Squared Error (RMSE), Root Mean
Squared Log Error (RMSElog), δ1, δ2, and δ3. The specific
formulas to calculate these metrics are as follows:

AbsRel =
1

n

∑
i

pi − gi
gi

SqRel =
1

n

∑
i

(pi − gi)
2

gi

RMSE =

√
1

n

∑
i

(pi − gi)2

RMSElog =

√
1

n

∑
i

(logpi − loggi)2

(1)

and the values δ1, δ2, and δ3 represent the percent-
ages of pixels where the condition max (p/q, q/p) <
1.25, 1.252, 1.253 is satisfied. Here, g denotes the ground
truth depth, p stands for the predicted depth, and n repre-
sents the number of pixels.

5 Supplementary Qualitative Results
We provide more qualitative comparisons on CityScapes in
the last two pages. The images are organized from left to
right, showcasing the original image, the estimated depth
obtained by full fine-tuning a U-Net from scratch, and the
estimated depth produced by our PPEA-Depth approach. We
also provide a qualitative video demo (demo.mp4 in the .zip
file). Please check it out for a more dynamic representation
of our approach’s performance.

References
Ding, X.; Zhang, X.; Zhou, Y.; Han, J.; Ding, G.; and Sun, J.
2022. Scaling Up Your Kernels to 31x31: Revisiting Large
Kernel Design in CNNs. arXiv preprint arXiv:2203.06717.

Eigen, D.; and Fergus, R. 2015. Predicting depth, surface
normals and semantic labels with a common multi-scale
convolutional architecture. In Proceedings of the IEEE in-
ternational conference on computer vision, 2650–2658.
Feng, Z.; Yang, L.; Jing, L.; Wang, H.; Tian, Y.; and Li, B.
2022. Disentangling Object Motion and Occlusion for Un-
supervised Multi-frame Monocular Depth. arXiv preprint
arXiv:2203.15174.
Guizilini, V.; Ambrus, , R.; Chen, D.; Zakharov, S.; and
Gaidon, A. 2022. Multi-Frame Self-Supervised Depth with
Transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 160–170.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch.
Watson, J.; Aodha, O. M.; Prisacariu, V.; Brostow, G.;
and Firman, M. 2021. The Temporal Opportunist: Self-
Supervised Multi-Frame Monocular Depth. In Computer
Vision and Pattern Recognition (CVPR).

Stem

Stage 0

Cost Volume
Computation

It−1, It

Transition 0

reduce conv
Ft0

Ft−10 , Ft0

……

Stage 3

Depth
Decoder

Dt

Depth Set D𝐶𝐶
Relative Pose T
(Predicted)

Stem

Stage 0

It

Transition 0

……

Stage 3

Depth
Decoder

Dt

Teacher Depth Network Student Depth Network

Depth
Encoder Ct

Identical
Structure

Figure 2: Detailed Structure of Teacher and Student Depth Network.

BatchNorm

Conv1x1

BatchNorm

ReLU

Conv31x31

ReLU

Conv1x1

BatchNorm

Conv5x5

BatchNorm

Conv1x1

BatchNorm

GELU

Conv1x1

BatchNorm

(a) RepLKBlock (b) ConvFFN

FrozenTuning

Adapter
Adapter

Figure 3: Detailed Structure of RepLKBlock and ConvFFN. The dashed line depicts the position of encoder adapters in
PPEA-Depth.

Figure 4: Qualitative Comparisons on CityScapes test dataset. Left: original input; Middle: estimated depth by full fine-
tuning a U-Net from scratch; Right: estimated depth by our PPEA-Depth.

