DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and
Geometry-Consistent Video Depth Estimation

Supplementary Material

1. Implementation Details

1.1. Hyperparameters

We employ the Euler scheduler [8] with 5 denoising steps,
as per DepthCrafter [4], we apply both guidance terms se-
quentially in the last two steps: geometry guidance first
to refine geometry within each window, followed by scale
guidance to synchronize scales across windows.

Scale guidance uses forward guidance [I], back-
propagating the MSE loss gradients (Eqn. (4) in the main
paper) to the noise prediction. This process iterates 1000
times in the final denoising step. The base learning rate Ir
(Eqn. (2) in the main paper) is set to 6e4 for the second-to-
last step and 1e6 for the final step, decaying as:

S(t) = 1Ir x 0'9811;61“//100 (1)

Early termination occurs if the loss falls below 5e — 4.

Geometry guidance uses backward guidance, optimizing
the predicted depth decoded from the clean latent (Eqn. (1)
in the main paper). We set the base learning rate to 0.01
for the second-to-last step and 0.02 for the final step, with
80 optimization iterations per step. We use the AdamW
optimizer (betas = (0.9, 0.999), weight decay = le-4) and a
cosine annealing scheduler (eta min = base Ir * 0.01, T max
= 80).

1.2. Loss Terms in Geometry Guidance

We employ geometric optimization based on multiple ge-
ometric constraints as the geometry guidance, specifically,
comprising of global reconstruction constraints and local
detail constraints to ensure geometric consistency. In each
denoising step, we first obtain the current prediction of the
clean latent using Eqn. (1) in the main paper. We then de-
code it back to the image space to obtain the predicted depth
maps d; on input video frames I;, which serve as inputs for
the guidance loss computation.

1.2.1. Global Geometric Constraints constraints

A monocular video, along with its corresponding depth
maps per frame, provides a comprehensive representation of
the scene geometry. Specifically, each frame can generate
a segment of the scene’s point cloud when projected with
its depth. Different frames should form aligned projections,
establishing an inherent constraint between depths. Align-
ing these projections requires access to the camera pose of
each frame. To determine the camera poses, we employ
an off-the-shelf tracking prediction network [7] to gener-
ate pairwise dense tracking pixel correspondences between

adjacent frames and estimate the camera poses P; of each
frame using Perspective-n-Point (PnP) [2]. We employ the
solvePnPRansac inferface from opencv-python library for
PnP computation. With the determined poses, we apply
depth reprojection loss and tracking loss to guarantee global
consistency, ensuring that the 3D structure formed with the
video depths within sliding window represents a geometri-
cally consistent scene.

Depth Reprojection Loss. Given a frame I;, camera in-
trinsics K and relative pose transformation T';_, ; to another
frame I;, we project pixels in I;, denoted as p;, to 3D points,
transform them to the coordinates of j and project to I;
to get the corresponding pixels p;, with a pixel correspon-
dence between two frames as:

pj ~ KTiy;di(p) K™ 'pi, @)

Consequently, depth map d; can be warped d;_,; under this
pixel correspondence relationship, and its difference to d;
forms the depth reprojection loss £,., which is computed as
an L1 difference between the two depth maps:

Ly =|d; — dj_] 3)

The depth reprojection loss is computed and averaged

across all pairs within frame distance of 3 in a sliding win-
dow. As for the case where camera intrinsic matrix K is un-
known, we can approximate it using image height (h) and
width (w), with focal length as (w + h)/2 and principal
point as (w/2, h/2) as common practice.
Tracking Loss. Tracking correspondences between I, and
frame I; allow us to project pixels to 3D using correspond-
ing depth predictions, obtaining points F; and P;. Trans-
forming P; to coordinate ¢ using derived camera poses from
PnP, the L2 difference to P; forms a tracking loss:

Ly = ||P; = Pj_ill2 4)

The tracking loss is computed for adjacent pairs only for
simplicity.

1.2.2. Local Geometric Constraints

Surface Normal Loss. To improve the local structure of the
generated depth, we employ an offline surface normal gen-
eration network [13] to pre-compute surface normals n?"®
for each video frame. We compute the surface normal n;
from the predicted depth map and align it to the direction
of the pre-computation result with surface normal angular
loss:

L =1—cos(n?™, n;) 3)



Smoothness Loss. We also use edge-aware smoothness
loss L4 to encourage local smoothness by compute an L1
penalty on depth gradients with image gradients as weight
[3]:

L, = [0xdile” 1% + |9, dyle 1T (6)

The detail constraints are computed from each frame re-
spectively and averaged over the batch.

1.2.3. Overall Loss

The overall guidance function comprises a weighted sum of
the multiple loss terms above:

L=0aqlqg+ aLi+ anly,+aly

We assign the largest loss weight to the depth reprojection
loss term as it plays the major role in aligning the geometry
between frames. We set ag = 35,a, = 0.1, a5 = 1,4 =
2 in all the experiments in the paper.

2. Comparison with Reconstruction Methods

We compare our method with representative reconstruction
methods on the first 10 ScanNet test scenes. COLMAP[9]
and 2DGS [5] (uses COLMAP poses) fail on 3 scenes due
to failed COLMAP pose estimation, while our method re-
constructs all scenes successfully. For shared scenes, our
approach achieves more accurate depth and poses (Table 1).

Method ‘ COLMAP [9] 2DGS[6] DepthSync
# Failure Cases | 3 3 0
AbsRel| 0.464 0.136 0.098
0<1.257 0.479 0.823 0.910
ATE| 0.214 0.088
RPE t| 0.0914 0.0198
RPE ] 6.65 0.611

Table 1. Comparison with Reconstruction Methods. Our
method demonstrates better geometric accuracy as well as better
robustness compared to conventional reconstruction methods.

3. Inference Cost and Supplementary Evalua-
tion

We report time and peak GPU memory usage during in-
ference in Table 2. To balance performance, we provide
a lightweight variant (denoted as Ours-S in Tables 2, 3):
omit geometry guidance and apply scale guidance only at
the penultimate denoising step. We further supplement a
comprehensive evaluation of this lightweight version with
current latest depth estimation methods in Table 3. Our sys-
tem offers a favorable trade-off between accuracy and cost,
supporting both efficient online alignment and more accu-
rate but costlier offline optimization.

Method ‘ Latency (s) Max Memory (MiB)
DepthCrafter [4] 9.01 13449
DepthAnyVideo [12] 14.6 24097
DUSt3R [11] 430 9207
MonST3R [14] 572 30559
Post Opt. | 652 14191
Ours:

Scale Guidance Only 333 18223
Geometry Guidance Only 952 26833
Ours 961 26833
Ours-S 18.1 18223

Table 2. Inference Cost Evaluation for 90 frames (Resolution:
640x 448) on a 40GB A100 GPU.

Cost Comparison with Post Optimization. Our full sys-
tem has significantly better results than post optimization
with comparable cost, and our scale-only version is both
faster (Table 2) and superior (main paper Table 3) than post
optimization.

Comparison with DUSt3R [11] and MonST3R [14]
(BRs). We follow the depth estimation paradigm, taking
a video as input and predicting video depths, while 3Rs use
image pairs to predict point maps, adopting a fundamentally
different technical route. For comparison, we use sliding
window strategy and align windows via overlap area to en-
able long video inference. We use 3Rs to adjacent frames in
each window and derive depths from predicted point maps.
Results are shown in Table 3 (DUSt3R fails on 2 of 26 Bonn
scenes, so it’s averaged over 24 scenes; others use all 26).
While 3Rs perform better on indoor scenes, likely due to
training on ScanNet++, our method achieves better results
on KITTT and Bonn.

4. Supplementary Ablation Study

We present supplementary ablation studies on the guidance
function, including the starting step, guidance order, and
geometry guidance loss terms. These studies are conducted
on the first 25 scenes of the ScanNet test set, with video
length as 150, which is consistent with the ablation settings
in the main paper.

Starting Step of Guidance. We conduct experiments on
when to start guidance. As shown in Table 4, starting guid-
ance early does not always improve performance, as noise
in the predicted clean latent during early denoising stages
can mislead the guidance process. Starting from the third-
to-last step yields the highest depth accuracy but the same
relative error with second-to-last and adds 50% inference
latency. Thus, starting from the second-to-last step strikes
the best balance between efficiency and effectiveness.
Ablation on Guidance Term Order. As shown in Ta-
ble 4, applying the geometry guidance first and then the
scale guidance leads to better depth estimation results, in-



Dataset ‘ ScanNet ‘ GMU Kitchen ‘ KITTI Bonn ‘
Metrics ‘ AbsRel] 401 1 ‘ AbsRel] 01 1 ‘ AbsRel] 01 T ‘ AbsRel| 41 1
ChronoDepth [10] 0.172 0.749 0.196 0.650 0.178 0.733 0.092 0.932
DepthCrafter [4] 0.141 0.799 0.143 0.795 0.114 0.879 0.095 0.917
DUSER [11]F 0.059 0.972 0.069 0.968 0.155 0.777 0.075 0.935
® MonST3R [14]f 0.067 0.959 0.087 0.920 0.192 0.692 0.046 0.975
Ours-S 0.128 0.834 0.126 0.844 0.112 0.882 0.070 0.968
Ours 0.113 0.870 0.113 0.881 0.110 0.887 0.069 0.972
ChronoDepth [10] 0.193 0.699 0.225 0.612 0.193 0.691 0.132 0.853
DepthCrafter [4] 0.171 0.716 0.160 0.748 0.173 0.727 0.143 0.801
DUSER [11]F 0.090 0.934 0.127 0.828 0.174 0.731 0.115 0.889
@ MonST3R [14]f 0.099 0911 0.140 0.817 0.232 0.620 0.086 0.918
Ours-S 0.157 0.757 0.138 0.807 0.119 0.863 0.094 0.926
Ours 0.154 0.769 0.131 0.837 0.117 0.869 0.093 0.929

Table 3. Supplementary Depth Evaluation. Ours-S: a lightweight version of our method. @ and @: the shortest and longest video length
settings in our main paper. ": trained on Hypersim. ': trained on ScanNet++.

Step | AbsRel 0 <1.25
5 0.146 0.779
4 0.144 0.787
3 0.137 0.803
2 0.137 0.801
1 0.151 0.757
Order | AbsRel & < 1.25
Scale First 0.145 0.782
Geometry First | 0.137 0.801

Table 4. Supplementary Ablation Study on Guidance Imple-
mentations. The ”Step” column indicates the number of final
steps in the diffusion loop at which the guidance is employed. For
example, if the ’Step” value is 5, it means that the guidance starts
from the last five steps.

dicating that a geometric aligned intra-window depth help a
better synchronization of depth scale between windows.

Ablation on Each Loss Term in Geometry Guidance. We
present ablation results on the effectiveness of each loss
term in geometry guidance in Table 5. Applying global
geometric constraints (depth reprojection loss and track-
ing loss) individually yield greater improvements than lo-
cal constraints (surface normal loss and smoothness loss).
Depth reprojection loss outperforms tracking loss, as it
operates on every pixel rather than sparse tracked points.
Combining local constraints with global constraints further
enhances the performance, as global constraints alone just
align the depths between frames but may not converge to
the optimal solution, while local constraints introduces sup-
plementary information about the geometric structure to the
optimization process and help avoid local optima.

. ‘ Metrics
Constraints
| AbsRel 4 < 1.25

Baseline 90 | 0.136 0.816
lossdonly | 0.122 0.856
loss n only 0.121 0.851
loss s only 0.122 0.847
loss t only 0.121 0.850

all loss 0.108 0.880

Table 5. Ablation Study on Guidance Terms on ScanNet first 25
Test Scenes.

5. Supplementary Qualitative Examples

We provide additional qualitative examples to supplement
the main paper. Figure 1, Figure 2, Figure 3, Figure 4 and
Figure 5 demonstrate that our DepthSync achieves better
scale synchronization between windows for long video and
more accurate geometric consistency within each window.
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Figure 2. Depth Error Map Comparison on Long Video Depth Consistency. Supplementary visualization of absolute error maps for
qualitative analysis (see Figure 4 in the main paper and Figure 1). Blue indicates low error, while red corresponds to high error.
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Figure 3. Supplementary Qualitative Examples for 3D Reconstruction Comparisons.
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Figure 4. Supplementary Qualitative Examples for 3D Reconstruction Comparisons.
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Figure 5. Supplementary Qualitative Examples for 3D Reconstruction Comparisons.
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